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Abstract. Biologists have long known that the smaller the population, the more susceptible it is to ex-
tinction from various causes. Biologists define minimum viable population size (MVP), which is the critical
population size, below which the population has a very small chance to survive. There are several theoret-
ical models for predicting the probability that a small population will become extinct. But these models
either embody unrealistic assumptions or lead to currently unresolved mathematical problems. In other
popular models of population dynamics, like the logistic model, MVP does not exist. In this paper we
find the existence of such a critical concentration in a simple model of evolution. We solve this model by
a mean field theory and show, in one and two dimensions, the existence of the critical adaptation and
concentration below which a population dies out. We also show that, like in the logistic model, above the
critical value a population reaches its carrying capacity. Moreover, in the two-dimensional case we find –
the so common in biological models – periodic solutions and their biffurcations.

PACS. 87.23.-n Ecology and evolution – 87.10.+e General theory and mathematical aspects –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

Paraphrasing James Murray [1] – Physical biology is a
fast growing, well recognized, albeit not clearly defined
subject. It is also one of the most exciting modern ap-
plications of statistical physics. For this reason, biological
evolution as a conducting biological theory has been un-
der a special interest of physicists for the last couple of
years (e.g. [2–9]).

Population dynamics lies at the core of ecological and
evolutionary theory. It shapes the structure of communi-
ties and generates evolutionary processes [10]. One of the
most important questions both in ecology and evolution
is the question about extinction of populations. Extinc-
tion, even extinction of whole species is a quite common
event [11–15]. In an important article [16] Shaffer sug-
gested that there are only (in general) four sources of un-
certainty which cause extinction:

• demographic stochasticity, which arises from chance
events in the survival and reproductive success of a
finite number of individuals;
• environmental stochasticity, i.e. variation of habitat

parameters, competition between populations, preda-
tors, parasites, diseases, etc.;
• natural catastrophes, such as floods, fires, etc.;
• genetic stochasticity resulting from changes in gene

frequencies.

Little is known about the role of any of these factors in any
specific case of extinction. However, biologists discovered
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that until the population size decays to a certain critical
value (called minimum viable population size (MVP)) the
population has big chance to survive. Shaffer [16] gave the
following definition of MVP: A minimum viable population
for any given species in any given habitat is the smallest
isolated population having a 99% chance of remaining ex-
tant for 1000 years despite the foreseeable effects of de-
mographic, environmental, and genetic stochasticity, and
natural catastrophes. This definition has, how noticed by
Shaffer, a tentative nature. The critical level for survival
probabilities might be set at 95% or 100%, or any differ-
ent level. Similarly the time frame of 1000 years might be
changed.

What is interesting there, is still no better definition
of MVP [17–22]. So, the first question immediately ap-
pears [22] – does the critical population size really exist
or is it just a heuristic device? If MVP really exists, can we
find its precise definition? In reality it is very difficult to
answer these questions. Natural populations always live
in a given habitat, which is never constant. Besides, we
can never find a completely isolated population, so there
is always some environmental stochasticity (competition,
predators, etc.). Moreover, even in laboratory we can not
check the existence of MVP, because there is always some
genetic stochasticity. But as physicists we have a powerful
tool in our hands – the ability to build a model.

In the model of evolution proposed by Mróz et al. [23]
(MPSW model) Monte Carlo simulations have shown that
a population dies out rather fast if the initial density is be-
low a certain value. However, it was not checked whether
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the critical density really exists. In this paper we adapt
the MPSW model to investigate the existence of MVP.
We will call the new model (adapted MPSW model) – the
K model. We will solve it analytically and show the exis-
tence of the critical density and adaptation, below which
a population has to die out.

2 The K model

In the K model, the habitat for the investigated popula-
tion is represented by a lattice with fixed boundary con-
ditions. The population consists of N(t) individuals. No
more than one individual can occupy a lattice site. Each
individual is characterized by a certain survival proba-
bility pi. Because we want to investigate the existence of
MVP, we have to assume that there is no natural selection,
so the average survival probability:

p = (N(t))−1

N(t)∑
j=1

pi,

remains constant. This is the necessary change we have to
make in the MPSW model to study MVP. To produce an
offspring two parents are needed. After producing an off-
spring the parents die. An individual can become a parent
provided it moves to a new location (see below).

The simulation algorithm of the MPSW model con-
sisted of initially putting M individuals on a lattice. Ac-
cording to the myopic ant rules the individual was moved
to one of its nearest neighboring sites. The neighbor for
mating was chosen at random. The condition that only the
individual which moved could mate represented all acts
necessary to breed in real life. This activity was required
from one partner only; such situation is often observed in
nature, i.e. activity belongs to the father. The parents pro-
duced three (i.e. the smallest number needed to survive)
offsprings, which were located randomly on the lattice and
then died.

The MPSW model was studied on a two-dimensional
square lattice and the simulations showed that for an av-
erage adaptation of p = 0.666 a population died out if its
initial concentration was below ≈ 0.2. It was also shown
that in order to grow, the population must have an adap-
tation larger than a certain critical value. In what follows
we show that these and even more interesting results can
be obtained from the K model analytically.

3 One-dimensional lattice

For simplicity let us start with a one-dimensional lattice.
This case was not studied in [23], however, it seems inter-
esting to check if there is any criticality in the K model in
one dimension. Let N(t) be the population size at time t,
then the rate of change

N(t+ 1)−N(t) = births− deaths, (1)

is a conservation equation [1] for the population. Observe
that in the model we have the following processes that can
change the population size:

• death of an individual with probability 1− p;
• birth of three offsprings and death of their parents if:

1) an individual will survive with probability p,
2) then will move with probability R1,
3) and then will find a partner to mate with probabil-

ity R2.

Hence, the evolution equation for the investigated model
is given by:

N(t+ 1) = N(t) +N(t) [pR1R2 − (1− p)] , (2)

where:

• R1 denotes the probability of movement, i.e. the prob-
ability that at least one of the neighboring sites is
empty;
• R2 denotes the probability of mating, i.e. the probabil-

ity that after the move at least one of the neighboring
sites is occupied.

Since all offsprings are located in the lattice randomly and
parents die, we can make mean field approximation assum-
ing that the probability that a lattice site is occupied is
given by the concentration:

c(t) =
N(t)
K

, (3)

where K is the total number of lattice sites. Thus for the
one-dimensional lattice we have:

R1(t) = (1− c(t))2 + 2c(t) (1− c(t)) = 1− c2(t)
R2(t) = c(t).

Dividing equation (2) by K we obtain the following
evolution equation:

c(t+ 1) = c(t) + c(t)
(
−pc(t)3 + pc(t) + p− 1

)
. (4)

A numerical solution of the evolution equation (4) is
shown in Figure 1. We can see that below a certain value
of concentration the population dies out and that concen-
tration is critical. In other words, the equation (4) has an
unstable steady state (eq. for p = 0.8c ≈ 0.28) and a stable
steady state c = 0. It is also obvious that if the concen-
tration is “large enough” the population reaches a certain
concentration c < 1 (eq. for p = 0.8c ≈ 0.83), which is
called by biologists the carrying capacity. We thus expect
a third (stable) steady state.

It is very easy to show that there are exactly three
steady states. All we have to do is plot c(t + 1) − c(t)
against c(t) and look when it is equal to zero. This is done
in Figure 2, where for p = 0.8 (dashed line) we can see all
three steady states – the trivial c∗1 = 0, which is a solution
of equation (4) for all p, and two other c∗2, c∗3 – solutions
of the following equation:

−pc3 + pc+ p− 1 = 0.
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Fig. 1. Numerical solution of equation (4). Survival probability
p = 0.8.

Observe that the above equation has non-imaginary
solutions only for

p ≥ p∗ =
27− 6

√
3

23
∼ 0.72.

Thus we can conclude that (see Fig. 3)

• for p < p∗ only one c∗1 = 0 steady state exists;
• for p ≥ p∗ three: c∗1 = 0, c∗2 and c∗3 steady states exist,

however, for p = p∗, c∗2 = c∗3.

We can easily check that see that:

∣∣∣∣dc(t+ 1)
dc(t)

∣∣∣∣
c=c∗1,c

∗
3

< 1,

which means that c∗1 = 0 and c∗3(> c∗2) are stable steady
states [24]. Analogously we can check that c∗2 is unstable:∣∣∣∣dc(t+ 1)

dc(t)

∣∣∣∣
c=c∗2

> 1.

The stability of critical points can be also checked using
a graphical procedure [1], as is shown in Figure 4.

What is very interesting for us, the results of the one-
dimensional system are in agreement with the following
biological observations:

• In order to grow a population must have an adaptation
larger then the critical value p∗. Below that value the
population becomes extinct.
• For p > p∗ there is a certain critical density below

which the population becomes extinct.
• When adaptation and initial density are above critical

values, the population reaches its p-dependent carrying
capacity.
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Fig. 2. Graphical representation of steady states. For p < p∗

the only steady state is c∗1 = 0.
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Fig. 3. Flow diagram for a one-dimensional system.
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Fig. 4. Graphical determination of a steady state and demon-
stration of how c(t) approaches it.
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Fig. 5. Graphical representation of steady states for the two-
dimensional lattice.

4 Two-dimensional lattice

For a two-dimensional square lattice (studied by Monte
Carlo simulations in [23]) the probabilities of movement
and of mating are given by:

R1(t) = (1− c(t))4 + 4c(t) (1− c(t))3

+ 4c2(t) (1− c(t))2 + 4c3(t) (1− c(t)) ,
R2(t) = c3(t) + 3c2(t) (1− c(t))2 + 3c(t) (1− c(t))3 .

Hence, from equation (2) we have

c(t+ 1) = c(t) + c(t)(−3pc7(t) + 13pc6(t)− 23pc5(t)

+ 18pc4(t)− 5pc3(t)− 3pc2(t)
+ 3pc(t) + p− 1). (5)

Like in the one-dimensional system, a certain critical
value of survival probability is needed in order for the
population to grow. The analytically obtained value of
p∗ = 0.583 agrees quite well with Monte Carlo results
presented in [23], where p∗ was estimated to lie between
0.55 and 0.62. For p > p∗ there are again three steady
states (see Fig. 5). Notice that for p = 0.66 the critical
value below which a population dies out is equal to 0.22.
This is also in agreement with the simulation results [23].

One can ask if there is any qualitative difference be-
tween the one- and two-dimensional case. The answer can
be seen in Figure 6, where we present a graphical solu-
tion of the two-dimensional system for p = 0.8. We can
see that the population concentration does not reach the
third steady state (like in the one-dimensional case), but a
certain limit cycle. Indeed, the flow diagram for the two-
dimensional case shows not only steady points, but bi-
furcations to the steady limit cycles, see Figure 7. Such a
phenomenon can be observed in real biological systems [1].
Moreover, Dennis et al. [19] presented a very interesting
experiment with the flour beetle Tribolium in which a tran-
sition from the logistic growth to periodic solutions was
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Fig. 6. Graphical determination of the solution – in this case
we have a stable periodic solution of period 2.
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Fig. 7. Flow diagram for the two-dimensional system. Stable
steady states are represented by solid lines and unstable steady
states by dashed lines.

observed. The behavior of the population depended, like
in our model, on the mortality rate.

5 Final remarks

We have presented the K model and its analytical solu-
tions in one and two dimensions. On the basis of the mi-
croscopic K model, with realistic biological assumptions,
we have constructed the evolution equation (4).

The evolution equation of the K model has features ob-
served in real biological systems, which many other models
(including the logistic model) lack. These features include:
existence of a critical concentration below which a popu-
lation dies out, dependence of the adaptation on carrying
capacity and minimal critical concentration, existence of
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a critical minimal adaptation below which a population
cannot survive, and periodic behavior.

It should be noticed, that the critical concentration is
not a critical point as in statistical phase transitions. It is
just a steady point-stable (carrying capacity) or unstable
(MVP) of evolution equation (4). Thus in the K model,
we can precisely define both, the carrying capacity and
MVP.

Moreover, we have found in the K model the critical
value of adaptation (survival probability), below which a
population has no chance to survive. Both steady states
(carrying capacity and MVP) depend on the value of
adaptation.

However, the most unexpected result of the K model
is the existence of limit cycles in two dimensions. Such
periodic behaviour of population was often suggested in
biological literature, not only for predator-prey systems.

Due to our mean field approximation we cannot ob-
serve here the accidental extinction of small populations
(K →∞ at constant c = N/K) seen for time →∞ [11].

This research was supported by University of Wroc law, grant
no. 2318/W/IFT/99.
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